Reliability-based Calibration of Bridge Design Codes

R

Andrzej S. Nowak

UNIVERSITY OF NEBRASKA-LINCOLN

Outline

- Problem Statement
- Calibration procedure
- Load Models
- Resistance Models
- Reliability Analysis Procedure
- Target Reliability
- Load and Resistance Factors

Natural and Man-Made Threats

- Natural hurricanes, floods, tornados, earthquakes
- Aging degradation of materials
- Inadequate maintenance (corrosion, cracking)
- Collisions vehicles and vessels
- Acts o vandalism, intentional damage
- Terrorist attacks, explosions, fires

Consequences of Uncertainties

- Deterministic analysis and design is insufficient
- Probability of failure is never zero
- Design codes must include a rational safety reserve
- Reliability is an efficient measure of the structural performance

Problem Statement

- New generation of design codes based on limit states (AASHTO LRFD)
- Load and resistance are random variables
- Reliability index as a measure of performance
- How to determine load and resistance factors?

AASHTO LRFD Bridge Design Specifications

Fifth Edition • 2010

American Association of State Highway and Transportation Officials

Basic questions:

- How can we measure safety of a structure?
- How safe is safe enough? What is the target reliability?
- How to implement the optimum safety level?

Calibration Procedure

- · Select representative structures
- Develop statistical models for loads
- · Develop statistical models for resistance
- Develop/select reliability analysis procedure
- Determine the target reliability index
- Determine load and resistance factors

Representative Structures

- Structural types (slab, I-beam, T-beam, box-beam, truss)
- Materials (non-composite and composite steel, reinforced concrete, prestressed concrete, wood)
- Span length (short, medium, long)

Load Models

- Dead load
- Live load (static and dynamic)
- Environmental loads (wind, snow, earthquake, temperature, ice)
- Special loads (vehicle and vessel collision, fire, explosion)

Bridge Live Load

- Strongly site-specific
- Traffic volume (ADTT)
- Multiple presence
- Extreme expected live load (75 year maximum)
- Fatigue live load (magnitude and frequency)
- Service live load

Vehicles

Statistical Data Base

- Load surveys, e.g. weigh-in-motion (WIM) truck measurement
- Load distribution (load effect per component)
- Simulations (e.g. Monte Carlo)
- Finite element analysis
- Boundary conditions (field tests)

Weigh-in-Motion System

Quartz strip

WIM system built in a highway pavement

Highway Route 23 at Nagoya, Japan

Weigh-in-Motion Data

- Truck WIM data was obtained from the Federal Highway Administration and NCHRP Project 12-76
- Total number of records exceeds <u>70 million</u>

Probability Paper

Data is plotted on the normal probability paper. A normal distribution function is represented by a straight line. Nebraska

Lincolr

Development of Numerical Procedure

- For each cross-section the maximum moment and shear was determined
- For each truck maximum value of live load effect was stored

Figure 1 - Bending Moment Envelopes - First 100 Trucks – 60ft Span

Simple Span Moment – Florida

Indiana – Load Effect – Moments

Cumulative Distribution Functions of Ratio of Truck Moment/ HL93 Moment - Simple Span Moment - Indiana

Cumulative Distribution Functions of Ratio of Truck Moment/ HL93 Moment - Simple Span Moment – Mississippi

Cumulative Distribution Functions of Ratio of Truck Moment/ HL93 Moment - Simple Span Moment – New York

Configuration of the Heaviest Truck – New York 8382

New York Extremely Heavy Trucks

- Number of trucks: 2,474,407
 - Additional filter:
 - M_{truck}/M_{HL93}>1.35
 - 5,455 trucks removed
 - or 0.2%

New York Extremely Heavy Trucks

- Number of trucks: 1,594,674
 - Additional filter:
 - M_{truck}/M_{HL93} >1.35
 - 540 trucks removed
 - or 0.03%

Extreme Value Analysis

 The cumulative distribution function of X_n can be represented as:

$$F_{Mn}(m) = F_X(m)^n$$

and the probability density function f_{Mn}(m):

$$f_n(m) = nF(m)^{n-1}f(m)$$

Department of Civil Engineering

32

Graphical representation of CDF and PDF

Department of Civil Engineering

33

Moment and Return Periods

Two trucks side-by-side

Video Recordings of Traffic Jam Situations FHWA Data

- Multiple-presence of trucks occupying three lanes
- One lane is almost exclusively occupied by trucks

Dynamic Load

- Roughness of the road surface (pavement)
- Bridge as a dynamic system (natural frequency of vibration)
- Dynamic parameters of the vehicle (suspension system, shock absorbers)

1.1

Figure 3.3. Dynamic and Static Strain under a Truck at Highway Speed.

Dynamic Load Factor (DLF)

- Static strain or deflection (at crawling speed)
- Maximum strain or deflection (normal speed)
- Dynamic strain or deflection = maximum - static
- DLF = dynamic / static

Code Specified Dynamic Load Factor

AASHTO Standard (2002)

$$I = \frac{50}{3.28L + 125} \le 0.3$$

AASHTO LRFD (2011)

0.33 of truck effect, no dynamic load for the uniform loading

Dynamic Load Factor

Dynamic Load - Conclusions

- Dynamic strain and deflection do not depend on truck weight
- Dynamic load factor (DLF) decreases for increased truck weight
- For a single truck DLF < 20%
- For two trucks side-by-side DLF < 10%

Parameters of Resistance $R = R_n M F P$

where :

- R_n = nominal value of resistance
- M = material factor
- F = fabrication factor
- P = professional factor

Parameters of Resistance

The mean value of R is

 $\mu_{R} = R_{n}\mu_{M}\mu_{F}\mu_{P}$

Coefficient of variation

$$V_{R} = \sqrt{(V_{M})^{2} + (V_{F})^{2} + (V_{P})^{2}}$$

• Bias factor

$$\lambda_{R} = \lambda_{M} \lambda_{F} \lambda_{P}$$

New Materials Data

- Compressive Strength of Ordinary Concrete, Ready mixed, fc': 3,000 3,500 4,000 4,500 5,000 and 6,000 psi
- Yield Stress of Reinforcing Steel Bars, Grade 60 Bar Sizes: #3, #4, #5, #6, #7, #8, #9, #10, #11 and #14
- Breaking Stress of Prestressing Steel (7-wire strands), Grade 270, Nominal Diameters: 0.5 in and 0.6 in

Ordinary Concrete – CDF of Strength

Ordinary Concrete – CDF of Strength

Ordinary Concrete – CDF of Strength

Summary of the Statistical Parameters for Concrete

f_c' [psi]

Statistical Parameters assumed for Monte Carlo Simulations - Reinforcing Steel Bars, Grade 60

Reinforcing Steel Bars, Grade 60 – Statistical Parameters

Bar Size	λ	V
# 3	1.18	0.04
# 4	1.13	0.03
# 5	1.12	0.02
# 6	1.12	0.02
#7	1.14	0.03
# 8	1.13	0.025
# 9	1.14	0.02
#10	1.13	0.02
#11	1.13	0.02
#14	1.14	0.02

Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress

Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress

Prestressing Steel – Statistical Parameters

Grade	Size	Number of samples	Bias Factor	V	
250 ksi	1/4 (6.25 mm) 3/8 (9.5 mm) 7/16(11 mm) 1/2 (12.5 mm)	22 83 114 66	1.07 1.11 1.11 1.12	0.01 0.025 0.01 0.02	
270 ksi	3/8 (9.5 mm) 7/16 (11 mm) 1/2 (12.5 mm) 0.6 (15 mm)	54 16 33570 14028	1.04 1.07 1.04 1.02	0.02 0.02 0.015 0.015	

Resistance Parameters

- Strength of material obtained from test data
- Load carrying capacity of components by Monte Carlo simulations
- Statistical parameters mean value, bias factor (ratio of mean to nominal), coefficient of variation

Composite Steel Girders

Ne Fig. 8-8. Moment-Curvature Curves for a Composite W36x210 Steel Section.

Reliability Index, β

Figure 5-8 PDFs of load, resistance, and safety margin.

Reliability Index, β

For a linear limit state function, g = R - Q = 0, and R and Q both being normal random variables

$$\beta = \frac{(\mu_{\rm R} - \mu_{\rm Q})}{\sqrt{\sigma_{\rm R}^2 + \sigma_{\rm Q}^2}}$$

- μ_R = mean resistance
- μ_Q = mean load
- σ_R = standard deviation of resistance
- σ_Q = standard deviation of load

Reliability index and probability of failure

	P _F	β
_	10-1	1.28
	10-2	2.33
	10-3	3.09
	10-4	3.71
	10-5	4.26
	10-6	4.75
	10-7	5.19
	10-8	5.62
	10-9	5.99

Reliability Analysis Procedures

- Closed-form equations accurate results only for special cases
- First Order Reliability Methods (FORM), reliability index is calculated by iterations
- Second Order Reliability Methods (SORM), and other advanced procedures
- Monte Carlo method values of random variables are simulated (generated by computer), accuracy depends on the number of computer simulations

What is Optimum Reliability?

- If reliability index is too small there are problems, even structural failures
- If reliability index is too large the structures are too expensive

Target Reliability

- Consequences of failure
- Economic analysis
- Past practice
- Human perception
- Social/political decisions

Recommended β_T

TIME	PRIMARY COMPONENTS		SECONDARY
PERIOD	Single Path	Multiple Path	
5 years	3.50	3.00	2.25
10 years	3.75	3.25	2.50
50 years	4.00	3.50	2.75

Recommended β_T

IMPORTANCE	NEW DESIGN	EXISTING	HISTORICAL
Low priority	3.0 – 3.5	2.0 -2.5	3.25 – 3.5
Medium priority	3.5 – 4.0	2.5 – 3.0	3.5 – 4.5
High priority	3.75 – 4.5	2.75 – 3.5	3.75 – 4.75

Load Factor

Resistance Factor

 ϕ is calibrated to get $\beta = \beta_T$

Neb

Conclusions

- Prior to calibration, there is a considerable spread of reliability indices. After calibration, the reliability indices are close to the target value
- Limit state design or LRFD codes provide for a consistent reliability level
- The format is flexible, and it can be used for new structural types, new materials
- Improved quality can be reflected in increased resistance factors and reduced load factors

Department of Civil Engineering

